If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+12y+1=16
We move all terms to the left:
y^2+12y+1-(16)=0
We add all the numbers together, and all the variables
y^2+12y-15=0
a = 1; b = 12; c = -15;
Δ = b2-4ac
Δ = 122-4·1·(-15)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{51}}{2*1}=\frac{-12-2\sqrt{51}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{51}}{2*1}=\frac{-12+2\sqrt{51}}{2} $
| -6(2x+6)=-75 | | 102x32=32 | | 102x32=12 | | 6x+6=8x-22 | | 4x=(6x+10) | | (5x-10)=(x+70) | | 12f+15=3 | | (9x+18)=(11x+2) | | (11x-5)=116 | | -11y+28y=11 | | (a/5)+8=9 | | 40=6q+6q2=40 | | X/5+x/2=7/4 | | r^2-4r+4=9 | | 1x+8=10+3× | | 5+7x=84 | | 0=x^+5×-7 | | (r/2)+6=5 | | 6(x+2)+-5x+-2=2x+x+-60 | | m^2+16m-20=0 | | m6-(m/6)-8=0 | | z2z-4-z=4 | | m^2+26m-20=0 | | 0.9^x=3 | | (n+3)+2(n+3)=3 | | 5(3x+9)-2x=15x-2)x-5) | | -4r-5r=30 | | 6(3x+9)-2x=15x-2(x-5) | | 28+7x=20+1x | | 5×+4y=160 | | 9=3(5x2) | | 8x-3x+6=5x-2 |